4)

\

Step 1:

\

The integral is \"\".

\

Definition of improper integeral :

\

If \"\" has a discontinuity at \"\" , where \"\", and both \"\" and \"\" are convergent, then

\

\"\".

\

Here the third term in the integrand function \"\" has a discontinuity at \"\",

\

\"\".

\

Consider \"\".

\

Sum property of Integrals :\"\".

\

\"\".

\

\"\"

\

\"\"

\

Step 2:

\

Consider \"\".

\

\"\"

\

\"\"

\

\"\".

\

\"\".

\

\"\".

\

5)

\

Step 3:

\

The integral is \"\".

\

Rewrite the integral as \"\".

\

Sum property of Integrals :\"\".

\

 \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

6)

\

The integral is \"\".

\

Sum property of Integrals :\"\".

\

Rewrite the integral as \"\"

\

\"\".

\

\"\".

\

Solution:

\

4)

\

\"\".

\

5) \"\".

\

6) \"\"