Step 1:

\
\
\

The curve is \"\", \"\".

\

Definition of the surface area:

\

If the curve \"\", \"\" is rotating about \"\"-axis, then the area of the resulting surface area is,

\

\"\". 

\

In this case \"\" and \"\".

\

Consider \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Substitute \"\" and \"\" and limits of \"\" in surface area formula.

\

Step 2:

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\".

\

Solution:

\

Surface area of the curve \"\" is \"\".

\
\