Step 1:

\

The function \"\".

\

Find the successive differentiation of \"\".

\

\"\"

\

\"\"

\

\

\"\"

\

\"\".

\

Centered at \"\".

\

\"\"

\

Substitute \"\".

\

\"\"

\

\"\"

\

 

\

 

\

\

\"\"

\

 

\

 

\

\

\"\"

\

 

\

\"\".

\

Step 2:

\

Definition of Taylor series:

\

\

If a function \"\" has derivatives of all orders at \"\" then the series

\

 

\

 

\

\

\"\" is called Taylor series for \"\" at \"\".

\

 

\

 

\

\

Substitute the above values in Taylor series.

\

 

\

 

\

\

\"\"

\

 

\

 

\

\

\"\"

\

 

\

\"\".

\

\"\".

\

 

\

\

The Taylor series for \"\" centered at \"\" is \"\".\"\"

\

 

\

 

\

\

Solution:

\

 

\

 

\

\

The Taylor series for \"\" centered at \"\" is \"\".\"\".

\

 

\

(2)

\

 

\

Step 1:

\

The function \"\".

\

Find the successive differentiation of \"\".

\

\"\"

\

\"\"

\

\"\"

\

\

\"\".

\

Centered at \"\".

\

Substitute \"\" in \"\".

\

 

\

\

\"\"

\

\

 

\

\"\"

\

 

\

 

\

 

\

\

 

\

 

\

\"\"

\

 

\

 

\

\

 

\

\"\"

\

 

\

 

\

 

\

 

\

\"\".

\

 

\

Step 2:

\

Definition of Taylor series:

\

\

If a function \"\" has derivatives of all orders at \"\" then the series

\

\

\"\" is called Taylor series for \"\" at \"\".

\

\

Substitute the above values in Taylor series.

\ \

\"\"

\
\

 

\

\"\".

\

\

 

\

 

\

 

\

 

\

\"\".

\

\

The Taylor series for \"\" centered at \"\" is \"\".

\

\

Solution:

\

\

The Taylor series for \"\" centered at \"\" is \"\".

\

\

 

\