\

The line equations are \"\" , \"\"-axis, \"\", \"\" and about \"\"-axis.

\

Method of disk:

\

The volume of the solid \"\" is \"\", where \"\" is the cross sectional area of the solid \"\".

\

\"\".

\

Graph:

\

\"\"

\

Radius \"\".

\

Integral limits are \"\" and \"\" .

\

\"\"

\

Power rule of integration: \"\".

\

\"\"

\

\"\".

\

Volume of the solid is \"\".

\

Solution:

\

Volume of the solid is \"\".

\

Step 1:

\

The equations are \"\" , \"\"-axis, \"\", \"\" and about \"\"-axis.

\

Method of disk:

\

The volume of the solid \"\" is \"\", where \"\" is the cross sectional area of the solid \"\".

\

\"\".

\

Graph:

\

\"\"

\

Radius is \"\".

\

Integral limits are \"\" and \"\".

\

\"\"

\

Integral formula: \"\".

\

\"\"

\

\"\".

\

Volume of the solid is \"\" cubic units.

\

Solution:

\

Volume of the solid is \"\" cubic units.

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

The function is  \"\" and the inerval is \"\".

\

Average value of the function \"\" on \"\" is defined as \"\".

\

Here  \"\".

\

Average value of \"\" is  \"\"

\

\"\"

\

Power rule of integration: \"\".

\

\"\"

\

\"\"

\

Average value of the function \"\" on \"\" is \"\".

\

 

\

Consider \"\".

\

Differentiate on each side with respect to \"\".

\

 

\

\"\"

\

 

\

\"\".

\

Change of integral limits:

\

 

\

Lower limit: If \"\" then \"\".

\

 

\

Upper limit: If \"\" then \"\".

\

Substitute \"\", \"\" and change of integral limits in \"\".

\

\"\" 

\

 

\

\"\"

\

\"\" 

\

 

\

\"\" 

\

 

\

\"\"

\

Average value of the function \"\" on \"\" is \"\".

\

\"\"

\

Average value of the function \"\" on \"\" is \"\".

\

 

\

 

\