Step 1:

\

The equations are \"\", \"\"-axis, \"\" and \"\".

\

The volume of the solid generated revolving about the \"\"-axis.

\

Waher method:

\

Volume of the solid: \"\". \ \

\

Where \"\" is the outer radius, \"\" is the inner radius.

\

Graph the functions \"\", \"\", \"\" and \"\".

\

\"\"

\

Observe the graph:

\

The outer radius is \"\".

\

the inner radius is \"\".

\

The integral limits are \"\" and \"\".

\

Step 2:

\

Find the volume of the solid.

\

Substitute \"\", \"\", \"\" and \"\" in \"\".\"\"

\

\"\"

\

\"\" \ \

\

Apply power rule of integration: \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

The volume of the solid is \"\".

\

Solution: \ \

\

The volume of the solid is \"\".

\

 

\

 

\

Step 1:

\

The equations are \"\", \"\"-axis, \"\" and \"\".

\

The volume of the solid generated revolving about the \"\"-axis.

\

Waher method:

\

Volume of the solid: \"\". \ \

\

Where \"\" is the outer radius, \"\" is the inner radius.

\

Graph the functions \"\", \"\", \"\" and \"\".

\

\"\"

\

Observe the graph:

\

The outer radius is \"\".

\

the inner radius is \"\".

\

The integral limits are \"\" and \"\".

\

Step 2:

\

Find the volume of the solid.

\

Substitute \"\", \"\", \"\" and \"\" in \"\".\"\"

\

\"\"

\

Apply power rule of integration: \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

The volume of the solid is \"\".

\

Solution: \ \

\

The volume of the solid is \"\".

\

 

\

 

\

 

\

\"\"

\

The function is \"\" on interval \"\".

\

Average value of the function \"\" on \"\" is defined as \"\".

\

In this case \"\" and \"\".

\

Substitute \"\", \"\" and \"\" in \"\".

\

The average value is \"\".

\

Apply formula: \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\". \ \

\

The average value is \"\".

\

Solution:

\

The average value is \"\".

\

 

\

 

\

 

\

 

\

 

\

 

\