Step 1:

\

(a)

\

The triangle side is \"\" and angle is \"\".

\

The laws of sines : \"\"

\

The angle \"\" is acute angle,

\

Relation from the ambiguous case: \"\" \"\".

\

If triangle has one solution and  \"\" is an acute angle , then \"\" and \"\"

\

\"\" and \"\"

\

Substitute \"\", \"\" in \"\".

\

\"\"

\

\"\"

\

 

\

If triangle has one solution, then values of  \"\" are  \"\" and \"\".

\

Step 2:

\

(b)

\

Relation from the ambiguous case: \"\" .

\

If triangle has two solutions and \"\" is an acute angle , then \"\".

\

Substitute the corresponding value in above formula.

\

\"\".

\

Divide each side by \"\".

\

\"\"

\

\"\"

\

\"\"

\

Consider \"\".

\

Here \"\".

\

Thus, \"\".

\

From (1) and (2), conclude that  \"\".\"\"

\

(c)

\

 

\

Relation from the ambiguous case: \"\" .

\

If triangle has no solution and \"\" is an acute angle, then \"\".

\

\"\".

\

Divide each side by \"\".

\

\"\"

\

Substitute \"\" and \"\" in above expression.

\

\"\"

\

\"\".

\

If triangle has no solution and \"\" is an acute angle then \"\".

\

 

\

\"\"

\

(a)

\

\"\" and \"\".

\

(b)

\

\"\".

\

(c)

\

\"\".