\

evaluate ∫  R  f(x,y) dy dx over the region

\

1. R= {(x,y)| 0 ≤ x ≤ 1 and 0 ≤ y ≤ x} where f(x,y)= 24y^2e^(x^4+1)

\

2. R={(x,y)| 0 ≤  x ≤  y and 0 ≤  y ≤  2 } where f(x,y) = 12e^(4y+2)

\

 

\

 

\

Fubinis Theorem:

\

If \"\" is continuous on the rectangle \"\" then \"\".

\

(1)

\

\"\" and \"\".

\

Evaluate \"\".

\

\"\"

\

\"\"

\

\"\"

\
\

\"\"

\

 

\

 

\

Fubinis Theorem:

\

If \"\" is continuous on the rectangle \"\" then \"\".

\

(1)

\

\"\" and \"\".

\

Evaluate \"\".

\

\"\"

\

\"\"

\

Apply integration by parts.

\

Integration by parts: \"\".

\

Consider \"\" then \"\".

\

Consider \"\" then \"\".

\

\"\"

\

\"\"

\

 

\

 

\

 

\

3. Find the volume of the solid under the graph of the function f(x,y) = 18x^2y^2 and over the region R= {(x,y)| 0 ≤ x ≤ 1 and -1 ≤  y ≤  2 }

\

 

\

(3)

\

Find the volume of the solid.

\

\"\" and \"\".

\

 Evaluate \"\".

\

\"\"

\

\"\"