evaluate ∫ ∫ R f(x,y) dy dx over the region
\1. R= {(x,y)| 0 ≤ x ≤ 1 and 0 ≤ y ≤ x} where f(x,y)= 24y^2e^(x^4+1)
\2. R={(x,y)| 0 ≤ x ≤ y and 0 ≤ y ≤ 2 } where f(x,y) = 12e^(4y+2)
\\
\
Fubinis Theorem:
\If is continuous on the rectangle
then
.
(1)
\ and
.
Evaluate .