\

Step 1:

\
\

The complex numbers are \"\" and \"\".

\

The polar form of a complex number \"\" is \"\".

\

Where \"\", \"\"and \"\" .

\

Here \"\" is the magnitude of the complex number and \"\" is argument of \"\".

\

Compare the complex number \"\" with  \"\".

\

Here \"\" and \"\".

\

Magnitude of \"\":

\

\"\"

\

\"\".

\

Substitute \"\", \"\" and \"\" in \"\", \"\".

\

\"\" and \"\"

\

\"\" and \"\".

\

Since the cosine function negative and sine function positive in second quadrant, the \"\" lies in second quadrant.

\

The angle satisfies both the conditions is \"\".

\

Substitute \"\" and \"\" in trigonometric form. \ \

\

\"\".

\

The trigonometric form of \"\" is \"\".

\

Compare the complex number \"\" with  \"\".

\

Here \"\" and \"\".

\

Magnitude of \"\":

\

\"\"

\

\"\".

\

Substitute \"\", \"\" and \"\" in \"\", \"\".

\

\"\" and \"\"

\

\"\" and \"\".

\

Since both the angles are negative, the \"\" lies in third quadrant.

\

The angle satisfies both the conditions is \"\".

\

Substitute \"\" and \"\" in trigonometric form. \ \

\

\"\".

\

The trigonometric form of \"\" is \"\".

\

Use product of complex numbers in polar form : \"\".

\

\"\"

\

\"\"

\

\"\".

\

\"\".