The quartic polynomial

\
\
\"\\displaystyle
\
\

has discriminant

\
\
\"\\Delta \ \
\
\ \
\
\"-80abc^2de+18abcd^3+16ac^4e-4ac^3d^2-27b^4e^2+18b^3cde-4b^3d^3-4b^2c^3e+b^2c^2d^2.\" \ \
\
\ \
\
\ \
\
Higher degrees \ \

More generally, for a polynomial of degree n with real coefficients, we have

\ \

 

\ \

The polynomial equation is p(x) = 2x^4 - 7x^3 - 10x^2 + 21x - 12.

\

This is the fourth degree polynomial, so n = 4.

\

a = 2, b = - 7, c = - 10, d = 21 and e = - 12.

\
\
\"\\Delta
\
\ \
\
\"-80abc^2de+18abcd^3+16ac^4e-4ac^3d^2-27b^4e^2+18b^3cde-4b^3d^3-4b^2c^3e+b^2c^2d^2.\"
\
\ \
\
∆ = 256(8)(-1728) - 192(4)(-7)(21)(144) - 128(4)(100)(144) + 144(4)(-10)(441)(-12) - 27(4)(194481) + 144(2)(49)(-10)(-12) \ \
\
\ \
\
      - 80(2)(-7)(100)(21)(-12) + 18(2)(-7)(-10)(9261) + 16(2)(10000)(-12) - 4(2)(-1000)(441) - 27(2401)(144) \ \
\
\ \
\
     + 18(-343)(-10)(21)(-12) - 4(-343)(-1000) + (49)(100)(441). \ \
\
\ \
\
∆ = - 3538944 + 2322432 - 7372800 + 30481920 - 21003948 + 1693440 - 28224000 + 23337720 - 3840000 + 3528000 \ \
\
\ \
\
       - 9335088 - 15558480 - 1372000 + 2160900. \ \
\
\ \
\
∆ = - 26720848 < 0. \ \
\
\ \
\ \

 

\ \