The function is f(x) = 2x4 - 4x2 + 6.
\If f,(x) > 0 (Positive) for all x in (a, b), then f(x) is increasing on [a, b].
\If f,(x) < 0 (Negative) for all x in (a, b), then f(x) is decreasing on [a, b].
\f,(x) = 8x3 - 8x = 8x(x2 - 1) = 0.
\The key numbers are x = 0 and x = ± 1.
\Test intervals x - Value Polynomial value Conclusion
\(- ∞, - 1) x = - 2 8(- 2)3 - 8(- 2) = - 64 + 16 = - 48 < 0 Decreasing
\(- 1, 0) x = - 0.5 8(- 0.5)3 - 8(- 0.5) = - 1 + 4 = 3 > 0 Increasing
\(0, 1) x = 0.5 8(0.5)3 - 8(0.5) = 1 - 4 = - 3 < 0 Decreasing
\(1, ∞) x = 2 8(2)3 - 8(2) = 64 - 16 = 48 > 0 Increasing
\So, f(x) is increasing on the interval (- 1, 0) and (1, ∞) and decreasing on the interval (- ∞, - 1) and (0, 1).