\

The polar form of a complex number z = a + bi is z = r (cos θ + i sin θ), where r = | z | = √(a2 + b2), a = r cos θ, and b = r sin θ, and θ = tan- 1(b / a) for a > 0 or θ = tan- 1(b / a) + π or θ = tan- 1(b / a) + 180o for a < 0.

\

The complex number is z = 3 + 4i.

\

The polar form of a complex number z = a + bi is z = r (cos θ + i sin θ).

\

Here a = 3 > 0 and b = 4.

\

So, first find the absolute value of r .

\

r = | z | = √(a2 + b2)

\

            = √[ (3)2 + (4)2 ]

\

            = √[ 9 + 16 ]

\

            = √[ 25 ]

\

            = 5.

\

Now find the argument θ.

\

Since a = 3 > 0, use the formula θ = tan- 1(b / a).

\

θ = tan- 1(4/3)o

\

θ ≅ tan- 1(1.333)o

\

θ ≅ 53.13o

\

Note that here θ is measured in degrees.

\

Therefore, the polar form of 3 + 4i is about 5[ cos(53.13o) + i sin(53.13o) ].

\

 

\
\