\"\"

\

\"\"

\

The above function is in the form \"\".

\

\"\", \"\", \"\"

\

Here \"\".

\

The relation between period P and B is \"\".

\

So, in the given equation Amplitude \"\", stretch \"\".

\

The period of the function is \"\"

\

Now the phase shift of the function is \"\"

\

Since the period of the sinusoidal function is \"\".

\

The solutions of the given function are

\

\"\"

\

\"\"

\

So, \"\" is one cycle of the function.

\

Now find key points using interval difference \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

             x

\
        \"\" \

        \"\"

\
\

       \"\" 

\
\

     \"\"           

\
\

     \"\" 

\
\

               y

\
\

          -3

\
\

         0 

\
\

        3

\
\

         0  

\
\

        -3  

\
\

Graph of one period of the function is

\

\"\"

\

 

\

\"\"

\

Similarly find the amplitude, period and phase shift of this function.

\

Amplitude \"\",\"\", \"\".

\

Period \"\"

\

Phase shift \"\".

\

The solutions of the function are

\

\"\"

\

\"\"

\

So, \"\" is one cycle of the function.

\

Now find key points using interval difference \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

             x

\
        \"\" \

        \"\"

\
\

       \"\" 

\
\

     \"\"           

\
\

     \"\" 

\
\

               y

\
\

          -4

\
\

         0 

\
\

        4

\
\

         0  

\
\

        -4

\
\

Graph of one period of the function is

\

\"\"