\"\"

\

First find the minimum point of the graph.

\

Since absolute value function can not be negative, the minimum point of the

\

graph is where \"\".

\

The original function is \"\".

\

Set original function \"\"

\

\"\"

\

\"\"

\

\"\"

\

According to addition property of equality: if a = b, then a + c = b + c.

\

\"\"             (Add 1 to each side)

\

\"\"                         (Additive invrese property: \"\")

\

\"\"                               (Additive identity property: \"\")\"\"

\

According to division property of equality: if \"\", then \"\".

\

\"\"                          (Divide each side by 2)

\

\"\"                               (Cancel common terms)

\

\"\"                              (Divide: \"\")\"\"

\

Next make at table, fill out the table with values for \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

f(x) = |2x - 1|

\
\

x

\
\

 f(x)

\
\

2

\
\

5

\
   – 1 \

3

\
\

0

\
\

1

\
\

1

\
\

1

\
\

2

\
\

3

\
     3     5
\

\"\"

\

First, draw a co-ordinate plane.

\

Locate the points on co-ordinate plane and draw the graph through these points.

\

\"absolute

\

\"\"

\

\"absolute