\"\"

\

Observe the figures, Then the triangles are right angular triangles.

\

Let the first second triangles are \"\", and \"\".

\

The sum of the measures of the angles in a triangle is 180°.

\

The right triangle measures ∠C = F = 90°, and A = 84°.

\

In \"\", Let x = the measure of ∠B.

\

A + B + C = 180°

\

55° + x + 90° = 180°                    (Substitute A = 55° and C = 90°)

\

x + 145° = 180°                            (Add: 90° + 55° = 145°)\"\"

\

Apply subtraction property of equality: If a = b then \"\".

\

x + 145° \"\" 145° = 180° \"\" 145° (Subtract 145° from each side)

\

x = 180° \"\" 145°                           (Apply additive inverse property: 145° \"\" 145° = 0)

\

x = 35°                                          (Add: 180° \"\" 145° = 35°)

\

So ∠B = E = 35°.

\

Since the corresponding angles are equal measures, \"\".\"\"

\

The corresponding angles are equal measures, \"\".