\"\"

\

The polar equation is \"\".

\

Rewrite the equation as : \"\"

\

Compare the equation with \"\".

\

e = 2 > 1

\

p = distance between the pole and the directix = 2.5.

\

So, the graph of the function represents a hyperbola.

\

So, the graph of the conic is at vertical directix to the left of the pole.

\

\"\"

\

The polar function is \"\".

\

Make the table of values to find ordered pairs that satisfy the function.

\

Choose random values for \"\" and find the corresponding values for r.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

\"\"

\
\

                              \"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\

1.Draw a polar co-ordinate plane.

\

2.Plot the points.

\

3.Draw a smooth curve through those points. 

\

\"\"

\

Observe the graph, the conic represents a hyperbola.\"\"

\

The conic is a hyperbola.