\"\"

\

The polar equation is \"\".

\

\"\"                  (Substitute e = 1)

\

Compare the equation with \"\".

\

p = distance between the pole and the directix = 2.

\

So, the graph of the conic is at horizontal directix above the pole.

\

\"\"

\

The polar function is \"\".

\

Make the table of values to find ordered pairs that satisfy the function.

\

Choose random values for \"\" and find the corresponding values for r.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

\"\"

\
\

                              \"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

undefined

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

1.Draw a polar co-ordinate plane.

\

2.Plot the points.

\

3.Draw a smooth curve through those points. 

\

\"\"

\

The above curve represents a parabola.

\

\"\"

\

\"\"              (Substitute e = 0.5)

\

\"\"                  (Simplify)

\

Compare the equation with \"\".

\

p = distance between the pole and the directix = 2.

\

So, the graph of the conic is at horizontal directix above the pole.

\

\"\"

\

The polar function is \"\".

\

Make the table of values to find ordered pairs that satisfy the function.

\

Choose random values for \"\" and find the corresponding values for r.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

\"\"

\
\

                              \"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

1.Draw a polar co-ordinate plane.

\

2.Plot the points.

\

3.Draw a smooth curve through those points. 

\

\"\"

\

The above represents an ellipse.

\

\"\"

\

\"\"              (Substitute e = 1.5)

\

\"\"                  (Simplify)

\

Compare the equation with \"\".

\

p = distance between the pole and the directix = 2.

\

So, the graph of the conic is at horizontal directix above the pole.

\

\"\"

\

The polar function is \"\".

\

Make the table of values to find ordered pairs that satisfy the function.

\

Choose random values for \"\" and find the corresponding values for r.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

\"\"

\
\

                              \"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

1.Draw a polar co-ordinate plane.

\

2.Plot the points.

\

3.Draw a smooth curve through those points. 

\

\"\"

\

The above curve represents a hyperbola.

\

\"\"

\

Graph of the above equations are shown below :

\

\"graph\"\"

\

If e = 1 the conic is parabola, if e = 0.5 the conic is ellipse and

\

if e = 1.5 the conic is hyperbola.

\

Graphs of the functions are shown below :

\

\"graph