(a)
\The function is .
Domain of the function is all possible values of x.
\Since it is a rational function, the denominator should not be the zero.
\Thus, the domain of the function is all real values of x except 1.
\(b)
\The function is .
Make the table 1 : \ \
\ \
x \ | \
\
| \
\
0.5 \ | \
\
| \
\
0.9 \ | \
\
| \
\
0.99 \ | \
\
| \
\
0.999 \ | \
\
| \
Make the table 2 : \ \
\ \
x \ | \
\
| \
\
1.5 \ | \
\
| \
\
1.1 \ | \
\
| \
\
1.01 \ | \
\
| \
\
1.001 \ | \
\
| \
Make the table 3 : \ \
\ \
x \ | \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
Make the table 4 :
\ \
x \ | \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
(c)
\The function is .
The domain of the function is all real values of x except 1.
\Observe the tables :
\As x approaches to 1 from the left, f(x) decreases without any bound.
\In contrast, as x approaches to 1 from the right, f(x) increases without any bound.
\\
The behavior of f near x = 1 is .
(a)
\The domain of the function is all real values of x except 1.
\(b)
\The tables are :
\Table 1 : \ \
\ \
x \ | \
\
| \
\
0.5 \ | \
\
| \
\
0.9 \ | \
\
| \
\
0.99 \ | \
\
| \
\
0.999 \ | \
\
| \
Table 2 : \ \
\ \
x \ | \
\
| \
\
1.5 \ | \
\
| \
\
1.1 \ | \
\
| \
\
1.01 \ | \
\
| \
\
1.001 \ | \
\
| \
Table 3 : \ \
\ \
x \ | \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
Table 4 :
\ \
x \ | \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
\
| \
(c)
\The behavior of f near x = 1 is .