\"\"

\

The function is \"\".

\

The denominator is zero when x = 1.

\

So, the domain of f is all real numbers except x = 1.

\

To determine the behavior of f near this excluded value, evaluate f(x) to the left and right of x = 1.\"\"

\

The domain of f is all real numbers except x = 1.

\

\"\"

\

The function is \"\".

\

Make the table : 1

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

x

\
\

\"\"

\
\

0.5

\
\

\"\"

\
\

0.9

\
\

\"\"

\
\

0.99

\
\

\"\"

\
\

0.999

\
\

\"\"

\
\

\"\"

\

Make the table : 2

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

x

\
\

\"\"

\
\

1.5

\
\

\"\"

\
\

1.1

\
\

\"\"

\
\

1.01

\
\

\"\"

\
\

1.001

\
\

\"\"

\
\

\"\"

\

Make the table : 3

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

x

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\

Make the table : 4

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

x

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

 

\

\"\"

\

The function is \"\".

\

The denominator is zero when x = 1.

\

So, the domain of f is all real numbers except x = 1.

\

To determine the behavior of f near this excluded value, evaluate f(x) to the left and right of x = 1.

\

Obsrve the tables x approaches 1 from the left, f(x) decreases without bound. In contrast, as x approaches 1 from the right, f(x) increase without bound.\"\"

\

The behavior of f near x = 1 is \"\".