\"\"

\

The equation of least squares regression parabola is \"\".

\

The system of equations are

\

\"\"                       (Equation 1)

\

\"\"      (Equation 2)

\

\"\"   (Equation 3)

\

Observe the graph, the 5 points \"\"

\

\"\" are lie on the line graph, so n = 5.\"\"

\

\"\"                                (Expand of \"\")

\

\"\"                               (Substitute values of x - coordinates) \"\"                                   (Expand of \"\")

\

\"\"                                   (Substitute values of y - coordinates)

\

\"\"                       (Expand of \"\")

\

\"\"                               (Substitute values of square of x - coordinates)\"\" \"\"                  (Expand of \"\")

\

\"\"                         (Substitute values of cube of x - coordinates) \"\"                  (Expand of \"\")

\

\"\"                     (Substitute values of fourth root of x - coordinates)

\

\

\"\"     (Expand of \"\")

\

\"\"                     (Substitute values of xi yi)

\

\

\"\"  (Expand of \"\")

\

\"\"                    (Substitute values of \"\")\"\"

\

The above values are substitute in system of equations as follows:

\

\"\"

\

\"\"

\

\"\"\"\"

\

Rewrite the system of linear equations and interchange the equations 2 and 3 as follows:\"\"                                                       (Equation 1)

\

\"\"                                                   (Equation 2)

\

\"\"                                                             (Equation 3)

\

Adding negative two times the first equation to the second equation produces a new second equation.

\

\"\"\"\"

\

So, the new system of equations are

\

\"\"                                                        (Equation 1)

\

\"\"                                                                (Equation 2)

\

\"\"                                                              (Equation 3)

\

Multiplying the second equation by \"\" produces a new second equation and multiplying the third equation by \"\" produces a new third equation.

\

So, the new system of equations are

\

\"\"                                                        (Equation 1)

\

\"\"                                                                  (Equation 2)

\

\"\"                                                                  (Equation 3)\"\"

\

The value of \"\" substitute in either equation 1, solve for c as follows:

\

\"\"                                                        (Write equation 1)

\

\"\"                                                  (Substitute \"\")

\

\"\"                                                        (Subtract \"\" from each side)

\

\"\"                                                              (Apply LCM rule: \"\")

\

\"\"                                                                 (Divide each side by 5)

\

So, the equation of least squares regression parabola is \"\".\"\"

\

The equation of least squares regression parabola is \"\".