\"\"

\

Volume of the cylindrical can\"\".

\

Formula for the volume of cylinder is \"\", where \"\" is radius and \"\" is height.

\

\"\"

\

\"\".

\

(a)

\

Find the cost function \"\" in terms of \"\".

\

Cost = top + bottom + side.

\

Area of the top and bottom \"\".

\

Area of the side \"\".

\

Substitute \"\".

\

\"\"

\

\"\".

\

Cost of the top and bottom = 6(area of the top and bottom)

\

                                        \"\"

\

                                       \"\".

\

Cost of the side = 4(area of the side)

\

                      \"\"             

\

                      \"\".

\

\"\".

\

\"\"

\

(b)

\

Graph the function \"\".

\

Identify the minimum point of the graph.

\

Graph of the function \"\":

\

\"\"

\

Observe the graph:

\

The minimum point occurs at \"\".

\

Therefore, the cost is smallest when \"\".

\

\

(a) \"\".

\

(b) The cost is smallest when \"\".