The coordinates of foci are (0 , -2) and (0, 2)
\Length of the major axis 2a = 8
\a = 8/2 = 4
\a² = 4² = 16
\Centre is mid point of foci
\Centre = ( Average of x-coordinates of foci , Average of y-coordinates of foci )
\Centre = ( (0+0)/2 , (-2+2/2) )
\Centre (h , k) = ( 0 , 0 )
\c = Distance from centre to foci
\c = √[ (0-0)² + (0+2)² ]
\c = √4 = 2
\c² = a² - b²
\b² = a² - c²
\b² = 4² - 2² = 16 - 4
\b² = 12
\Th general form of ellipse : (x-h)²/a² + (y-k)²/b = 1
\(x-0)²/16 + (y-0)²/12= 1
\(x²/16) + (y²/12) = 1
\