\"\"

\

(a)

\

The function is \"\".

\

Domain of logarithm function \"\" is defined for all  \"\" or \"\".

\

Therefore, the domain of the function \"\" is \"\".

\

\"\"

\

The domain of \"\" is \"\".

\

The \"\"-intercept is \"\".

\

\"\"

\

(b)

\

Graph:

\

Graph the function \"\" :

\

\"\"

\

\"\"

\

(c)

\

Range of the logarithm function \"\" is defined as \"\".

\

Observe the graph range of \"\" is \"\".

\

Vertical asymptote of the logarithmic function \"\" is  \"\".

\

Therefore, Vertical asymptote of \"\" is \"\".

\

The verical asymptote is \"\".

\

\"\"

\

(d)

\

Find the inverse function of \"\".

\

Consider \"\".

\

Solve for \"\".

\

\"\"

\

\"\"

\

\"\"

\

\

Interchange the terms \"\" and \"\".

\

\"\"

\

Therefore ,\"\".

\

The inverse function of the \"\" is \"\".

\

\"\"

\

(e)

\

Find the domain and range of inverse function.

\

The inverse function is \"\".

\

The domain of the inverse function \"\" is the range of the function \"\".

\

The range of the inverse function \"\" is the domain of the function \"\".

\

The domain of \"\" is \"\".

\

Range of \"\" is \"\".

\

The \"\"-intercept is \"\".

\

\"\"

\

(f)

\

Graph:

\

Graph the function \"\" :

\

\"\"

\

\"\"

\

(a)  The domain of \"\" is \"\".

\

     The \"\"-intercept is \"\".  

\

\

(b)  Graph of the function \"\" is :

\

\"\"

\

(c) The range of \"\" is \"\".

\

(d)  The inverse function of the \"\" is \"\".

\

(e) The domain of \"\" is \"\".

\

       The range of \"\" is \"\".

\

        The \"\"-intercept is \"\".

\

(f) Graph of  the function \"\" is :

\

\"\"