\"\"

\

(a)

\

The circle equation is \"x^2+y^2+x+y-\\frac{1}{2}=0\".

\

The standard form of circle is \"\\left.

\

Where center is \"\\left and radius is \"r\".

\

Convert the given circle equation into standardform.

\

\"x^2+x+y^2+y=\\frac{1}{2}\"

\

To complete the square add \"(\"half the \"x\" coefficient\")^2\" and \"(\"half the \"y\" coefficient\")^2\" to each side of equation.

\

\"(\"half the \"x\" coefficient\")^2\"  \"=\\left.

\

\"(\" half the \"y\" coefficient\")^2\" \"=\\left.

\

\"x^2+x+\\frac{1}{4}+y^2+y+\\frac{1}{4}=\\frac{1}{2}+\\frac{1}{4}+\\frac{1}{4}\"

\

\"\\left

\

\"\\left

\

Compare it with standardform \"\\left.

\

Center \"\\left and radius \"r=1\".

\

\"\"

\

\"\\left

\

Graph the circle with center \"\\left and radius \"r=1\".

\

Find four points " radius away from the center in the up, down , left and right direction"

\

Up \"\\left,

\

Down \"\\left,

\

Left \"\\left and

\

Right \"\\left.

\

Graph :

\

Draw the coordinate plane.

\

Plot the center at \"\\left.

\

Plot four points " radius away from the center in the up, down , left and right direction".

\

Sketch the circle.

\

\"\"

\

\"\"

\

\"\\left

\

The circle equation is \"x^2+y^2+x+y-\\frac{1}{2}=0\".

\

Find the intercepts.

\

First find the \"x\" intercept by substituting \"y=0\" in the original equation.

\

\"\\\\x^2+0^2+x+0-\\frac{1}{2}=0\\\\x^2+x-\\frac{1}{2}=0\"

\

Compare with quadratic form \"ax^2+bx+c=0\".

\

\"a=1,.

\

\"x=\\frac{-b\\pm

\

\"x=\\frac{-1\\pm

\

\"x=\\frac{-1\\pm

\

\"x=\\frac{-1\\pm

\

\"x=\\frac{-1+  and  \"x=\\frac{-1-.

\

\"x\"-intercepts are \"\\frac{-1+  and  \"\\frac{-1-.

\

Next find the \"y\" intercept by substituting \"x=0\" in the original equation.

\

\"0^2+y^2+0+y-\\frac{1}{2}=0\"

\

\"y^2+y-\\frac{1}{2}=0\"

\

Solve the equation by using quadratic formula.

\

\"y\"-intercepts are \"\\frac{-1+  and  \"\\frac{-1-.

\

\"\"

\

\"\\left Center \"\\left and radius \"r=1\".

\

\"\\left The circle graph :

\

\"\"

\

\"\\left

\

\"x\"-intercepts are  \"\\frac{-1+  and  \"\\frac{-1-.

\

\"y\"-intercepts are  \"\\frac{-1+  and  \"\\frac{-1-.