\"\"

\

\

\

\"\"

\

\

   

\

\

(a) The given ladder positions are modified as above diagram

\

\

\

\

\"\"length of ladder \"\"

\

\

   

\

\

then length of ladder is calculated as

\

\

 

\

\

\"\"

\

\

 

\

\

From \"\" triangle

\

\

 

\ \

\"\"

\
\

 

\
\

\"\"             ( Substitute \"\"  )

\
\

 

\
\

\"\"

\
\

 

\
\

\"\"             ( since   \"\" )

\
\

 

\
\

From \"\"  triangle

\
\

 

\
\

\"\"

\
\

 

\
\

\"\"               ( Substitute   \"\"   and  \"\"  )

\
\

 

\
\

\"\"

\
\

 

\
\

\"\"               ( since   \"\" )

\
\

 

\
\

\"\"

\
\

 

\
\

Substitute   \"\"  and  \"\"

\
\

 

\
\

\"\"

\
\

\"\"

\
\

(b)

\
\

length of ladder \"\"\"\"

\
\

 

\
\

\

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 To draw graph for  \"\"

\

\

Substitute different values for θ in a given function then

\

\

\

 

\

\

 

\

\

 

\

\

\"\"    ( substitute  \"\" )

\

\

 

\

\

\"\"    ( substitute  \"\" )

\

\

 

\

\

\"\"      ( substitute  \"\" )

\ \

 

\
\

\"\"    ( substitute  \"\" )

\
\

 

\
\

\"\"    ( substitute  \"\" )

\

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

By substituting all the above values draw graph

\

\"\"

\

\

\

\"\"

\

\

 

\

(c) To find least value of the θ

\

\

\

apply derivative for  \"\"

\

\

\"\"

\

\

 

\

\

As \"\" is constant  \"\"  and   \"\"

\

\

 

\

\

\"\"                      ( simplify)

\

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

\

\"\"        ( simplify)

\

\

\

 

\

\

\"\"    ( simplify)

\

\

 

\

\

\"\"                       ( simplify)

\

\

 

\

\

 

\

\

\"\"                                 ( simplify)

\

\

 

\ \

 

\
\

\"\"                                              (simplify)

\
\

 

\
\

 

\
\

\"\"                                                 ( simplify)

\
\

 

\
\

 

\
\

\"\"                                ( simplify)

\
\

 

\
\

 

\
\

\"\"                                                 ( simplify)

\
\

 

\
\

 

\
\

\"\"                         ( simplify)

\
\

 

\
\

 

\
\

\"\"

\
\

 

\ \

\"\"

\

\

 

\

 

\

 

\

 

\

 

\

 

\

 

\

(d) Here from first figure in step 1

\

The length of ladder is AE.

\

If we try to increase 1 ft length at side A of the ladder then 1 ft length will be decreased at side E of the ladder.

\

Length of ladder that can be carried around the corner is always constant.

\

So the length of longest ladder ( maximum ) that can be carried around the corner is same as the length of smallest ladder ( minimum ).

\

\"\" Length of longest ladder

\

\"\"

\

\"\"         ( substitute \"\" )

\

\"\"         ( simplify )

\

\"\"                           ( simplify )

\

\"\"                                     ( simplify )

\

\

\"\"                                          ( simplify )

\

\

 

\

\"\"

\

The solution is

\

(a)  Function is \"\"  is proved

\

(b) Graph for  Function \"\" is drawn

\

(c)  Least value of angle  \"\"

\

(d)  Length of longest ladder is \"\"

\