\

\

Consider Triangle ABC is inscribed in a circle with Centre O.

\

\"\"

\

From above figure,

\

Radius = OA = OB = OC = r

\

Let the sides of the triangle are

\

a = BC , b = AC , c = AB

\

Angles are A , B , C.

\

From OBD right angled triangle

\

sinA = BD/OB

\

sinA = (a/2)/r

\

sinA = a/2r

\

(sinA)/ a = 1/2r         ------------------------(1)

\

From OCE right angled triangle

\

sinB = CE/OC

\

sinB = (b/2)/r

\

sinB = b/2r

\

(sinB)/ b = 1/2r         ------------------------(2)

\

From OAF right angled triangle

\

sinA = AF/OA

\

sinC = (c/2)/r

\

sinC = c/2r

\

(sinC)/ c = 1/2r         ------------------------(3)

\

From (1) , (2) , (3) Equations

\

\

(sinA)/ a = (sinB)/ b = (sinC)/ c = 1/2r

\