\
\
Consider Triangle ABC is inscribed in a circle with Centre O.
\From above figure,
\Radius = OA = OB = OC = r
\Let the sides of the triangle are
\a = BC , b = AC , c = AB
\Angles are A , B , C.
\From OBD right angled triangle
\sinA = BD/OB
\sinA = (a/2)/r
\sinA = a/2r
\(sinA)/ a = 1/2r ------------------------(1)
\From OCE right angled triangle
\sinB = CE/OC
\sinB = (b/2)/r
\sinB = b/2r
\(sinB)/ b = 1/2r ------------------------(2)
\From OAF right angled triangle
\sinA = AF/OA
\sinC = (c/2)/r
\sinC = c/2r
\(sinC)/ c = 1/2r ------------------------(3)
\From (1) , (2) , (3) Equations
\\
(sinA)/ a = (sinB)/ b = (sinC)/ c = 1/2r
\