\"\"

\

Theorem :

\

If \"\" is a positive integer, the complex number \"\" has exactly \"\" distinct complex \"\"roots.

\

The complex roots are \"\", where \"\"

\

\"\"

\

The complex number is \"\".

\

First convert the complex number into polar form.

\

Compare the complex number with \"\".

\

Here \"\".

\

\"\"

\

The angle is \"\".

\

\"\"

\

The polar form of \"\" is \"\".

\

The complex fourth roots of  \"\"are

\

\"\", here \"\" and \"\" and \"\".

\

\"\"

\

Find the four complex roots.

\

For \"\",

\

\"\"

\

For \"\",

\

\"\"

\

For \"\",

\

\"\"

\

For \"\",

\

\"\"

\

The complex fourth roots of \"\" are \"\"

\

\"\"

\

Graph the complex number  \"\" is,

\

\"\".

\

\"\"

\

The complex fourth roots of \"\" are \"\"

\

Graph the complex number  \"\" is

\

\"\".