\"\"

\

Parabola focus at \"\" and directrix is \"\"

\

Since the directrix is \"\", then the parabola is horizontal.

\

Standard form of horizontal parabola is \"\".

\

Where \"\" is vertex.

\

If \"\" then the parabola opens to the left and \"\" parabola opens to the right.

\

Directrix is \"\" and focus at \"\".

\

\"\"

\

Focus \"\" = \"\"

\

\"\"

\

\"\".

\

Directrix \"\"

\

\"\".

\

\"\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\".

\

Vertex of parabola is \"\".

\

\"\"

\

Find the value of \"image\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\".

\

Substitute \"\" and \"\" in standard form.

\

\"\"

\

\"\".

\

The parabola equation is \"\".

\

\"\"

\

Latus rectum is the line segment of a parabola perpendicular to axis which has both ends on the curve.

\

Obtain the points define the latus rectum, let \"\"

\

Then \"\"

\

\"\"

\

\"\"

\

The two points that define latus rectum are \"\"

\

Graph:

\

Draw the coordinate plane.

\

Plot the vertex, focus, and the two points \"\"

\

Draw the directrix line.

\

Connect the plotted points with smooth curve.

\

\"\"

\

\"\"

\

The parabola equation is \"\".

\

The two points that define latus rectum are \"\"

\

Graph of \"\":

\

\"\".