\"\"

\

Rotation formula :

\

If the \"\" and \"\"-axes are rotated through an angle \"\", the coordinates \"\" of a point P relative to the \"\"-plane and the coordinates \"\" of the same point relative to the new \"\" and \"\"-axis and are related by the formulas \"\" and \"\".

\

The general form is \"\"

\

The angle is \"\".

\

If \"\", then \"\", so \"\".

\

If \"\", then \"\", so \"\".

\

\"\"

\

The equation is \"\".

\

Compare \"\" with \"\".

\

\"\" and \"\".

\

The angle is \"\".

\

Substitute \"\" and \"\" in \"\"

\

\"\"

\

Since \"\", the angle lies in second quadrant.

\

\"\"

\

\"\".

\

Use Pythagorean theorem :

\

\"\".

\

\"\"

\

\"\".

\

In second quadrant cosine function is negative.

\

\"\".

\

\"\"

\

Half angle formula of sine function is \"\".

\

Substitute \"\" in above equation.

\

\"\"

\

\"\"

\

Half angle formula of cosine function is \"\".

\

Substitute  \"\" in above equation.

\

\"\"

\

\"\"

\

\"\"

\

Rotation of \"\"-axis :

\

\"\".

\

Substitute \"\" and \"\" in above equation.

\

\"\"

\

Rotation of \"\"-axis :

\

\"\".

\

Substitute \"\" and \"\" in above equation.

\

\"\"

\

The rotation formulas are \"\" and \"\".

\

\"\"

\

Substitute\"\" and \"\" in \"\".\"\"

\

\"\"

\

The above equation is a parabola.

\

The general form of parabolic equation is \"\".

\

Where \"\" is the vertex and \"\" is focus.

\

Compare \"\" with \"\".

\

\"\".

\

\"\"

\

The vertex is \"\".

\

The focus is \"\".

\

\"\"

\

Graph:

\

(1) Draw the coordinate plane.

\

(2) Draw the rotated coordinate plane

\

(3) Graph of the function \"\".

\

\"\"

\

\"\"

\

The angle is \"\"

\

The function \"\".

\

The vertex is \"\".

\

The focus is \"\".

\

The graph of the function \"\"

\

\"\".