\"\"

\

The general form of equation is \"\".

\

The rotation equation is \"\".

\

From exercise (55): \"\", hence the value of \"\" is invariant.

\

Consider \"\" so that \"\".

\

Then, \"\".

\

(a) 

\

If \"\" then \"\".

\

If \"\", then either \"\" or \"\", but not both, so the form of equation either \"\" or \"\".

\

Consider the equation \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

The vertex of the parabola is \"\" and the axis of symmetry is parallel to \"\"-axis.

\

\"\"

\

Consider the equation \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

The vertex of the parabola is \"\" and the axis of symmetry is parallel to \"\"-axis.

\

Therefore, \"\" then the conic represents parabola.

\

\"\"

\

(b) If \"\" then \"\".

\

If \"\", then \"\" and \"\" are of the same sign.

\

The equation is \"\", \"\", \"\".

\

\"\"

\

\"\"

\

\"\"

\

Completing the squares by adding \"\" and \"\".

\

\"\"

\

\"\"

\

Let \"\".

\

\"\".

\

If \"\".

\

\"\"

\

\"\"

\

Here \"\" and \"\" are same signs.

\

Therefore, the equation \"\" represents an ellipse.\"\"

\

(c) If \"\" then \"\".

\

If \"\", then \"\" and \"\" are of the opposite sign.

\

The equation is \"\", \"\", \"\".

\

\"\"

\

\"\"

\

\"\"

\

\

Completing the squares by adding \"\" and \"\".

\

\"\"

\

\"\"

\

Let \"\".

\

\"\".

\

If \"\".

\

\"\"

\

\"\"

\

Here \"\" and \"\" are opposite signs.

\

Therefore, the equation \"\" represents a hyperbola.

\

\"\"

\

(a) \"\" represents a parabola.

\

(b) \"\" represents an ellipse.

\

(c) \"\" represents a hyperbola.