\"\"

\

The parametric equations is "\"\"".

\

\"\"

\

Eliminate the parameter t using a pythagorean identity.

\

\"\"

\

\"\"

\

The parametric equation is hyperbola.\"\"

\

a2 = 1, b2 = 1 vertices at (\"\"1, 0) = (\"\"1, 0) = (\"\"1, 0), (1, 0).

\

\"\".

\

\"\"

\

\"\"

\

\"\"Then foci at (\"\"c, 0) = (\"\", 0).

\

The asymptote lines \"\".\"\"

\

\"\"

\

\"\"

\

\"\"At \"\"  ⇒  \"\"

\

At \"\"  ⇒  \"\"

\

At \"\"  ⇒  \"\" \ \

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

x

\
\

\"\"

\
\

y

\
\

(x, y)

\
\

\"\"

\
\

\"\"

\
1(\"\", 1)
\"\" \

\"\"

\
\"\"\"\"
\

1

\
\

\"\"

\
\

 0

\
\

(1, 0)

\
\

The graph of the equations \"\".

\

\"graph

\

\"\"

\

The solution is \"\".

\

 

\

\"graph