\"\"

\

The system of equations are \"\".

\

If we let \"\", \"\" and \"\"\"\"

\

The original system of equations can be written compactly as the matrix equation

\

\"\"

\

\"\"                 (Multiply each side by \"\")

\

\"\"             (Apply associative property of multiplication)

\

\"\"                       (\"\")

\

\"\"                             (Apply identity property of matrix: \"\")\"\"

\

Now we find \"\"

\

Form the matrix

\

\"\"

\

\"\"                    \"\"

\

\"\"

\

\"\"     (\"\")\"\"

\

\"\"

\

\"\"              (\"\")

\

\"\"

\

\"\"              (\"\")

\

\"\"\"\"

\

\"\"    (\"\")

\

\"\"

\

\"\"    (\"\")

\

\"\"

\

\"\"    (\"\")

\

\"\"\"\"

\

\"\"  \"\"

\

\"\"

\

The matrix \"\" is now in reduced row echelon form, and the identity matrix \"\" is

\

on the left of the vertical bar. The inverse of A is

\

\"\"\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"             (Equate the each side corresponding entries)\"\"

\

The solution is \"\" or, using an ordered pair is \"\".