\"\"

\

The function is \"y and point is \"open

\

\"fraction                       (Apply derivative) 

\

\"y                          (The sum rule)

\

\"y                          (The power rule: \"fraction)

\

\"y                                  (Simplify)

\

\"y                                 (The rule of exponentiation: \"a and \"a)

\

\"y                                      (Simplify)\"\"

\

To find the slope graph when \"x, evaluate the derivative, \"y, at \"x.\"m                         (Slope of graph at \"open)

\

\"m                  (Simplify)\"\"

\

Now, using the point slope form of the equation of a line, you can write

\

\"y                           (Point - slope form)

\

\"y                   (Substitute \"y)

\

\"y                               (Simplify)

\

\"y                                  (Multiplt by 4)

\

\"y                                        (Subtract 2 from each side)

\

\"\"

\

Therefore the tangent line equation is \"y.

\

The graph of the function and its tangent line at the point.

\

\"\"