The function is \"h(s)=\\frac{1}{s-2}\" and the interval is \"[.

\"h(s)=\\frac{1}{s-2}\"

Apply derivative on each side with respect to \"s\".

\"\\frac{d\\

\"h\'(s)=\\frac{-1}{(s-2)^2}\"

To find the critical numbers of \"h(s)\", equate \"h\'(s)\" to zero.

\"\\\\h\'(s)=0\\\\

The function \"h(s)\" has critical value at \"s=2\".

\"s=2\" is not in the region \"[.

To find the absolute extreme of function in given region \"[ , sketch the function .

\"\"

Left end point \"(0,\\ is maximum point over the interval \"[.

Right end point \"(1,\\ is minimum point over the interval \"[​.

\"\"

Minimum point is   \"(1,\\.

Maximum point is \"(0,\\.