The function is \"h(t)=\\frac{t}{t-2}\" and the interval is \"[.

\"h(t)=\\frac{t}{t-2}\"

Apply derivative on each side with respect to \"t\".

\"\\frac{d\\

Quotient rule of derivatives : \"\".

\"\\\\h\'(t)=\\frac{(t-2)(1)-t(1)}{(t-2)^2}\\\\

To find the critical numbers of \"h(t)\", equate \"h\'(t)\" to zero.

\"\\\\h\'(t)=0\\\\

The function \"h(t)\" has critical value at \"t=2\".

\"t=2\" is not in the region \"[.

To find the absolute extreme of function in given region \"[ , sketch the function .

\"\"

Left end point \"(3,\\ is maximum point over the interval \"[.

Right end point \"\\left is minimum point over the interval \"[​.

\"\"

Minimum point is \"\\left.

Maximum point is \"(3,\\.