The function is \"y=3- and the interval is \"[.

\"y=3-

Apply derivative on each side with respect to \"t\".

\"\\frac{d\\

\"\\small

To find the critical numbers of \"y\", equate \"y\'\" to zero.

\"\\\\y\'=0\\\\

The function \"y\" has critical value at \"t=3\".

\"t=3\" is in the region \"[.

\"\\\\y=3-

To find the absolute extreme of function in given region \"[ , sketch the function .

\"\"

Critical point \"(3,\\ is maximum point over the interval \"[.

Left end point \"(-1,\\ is minimum point over the interval \"[​.

\"\"

Minimum point is \"(-1,\\.

Maximum point is \"(3,\\.