\"\"

\

The function is \"\" and the interval is \"\".

\

Rolle\"\"s Theorem :

\

Let \"\" be a function that satisfies the following three hypotheses.

\

1. \"\"  is continuous on \"\".

\

2. \"\"  is differentiable on \"\".

\

3. \"\".

\

Then there is a number \"\" in \"\" such that \"\".

\

\"\"

\

The function is \"\".

\

Substitute \"\" in \"\".

\

\"\".

\

Substitute \"\" in \"\".

\

\"\".

\

\"\".

\

\"\"

\

The function is \"\" and the interval is \"\".

\

A function \"\" is continuous when, for every value \"\" in its domain, \"\" is defined, and \"\".

\

Consider the number \"\" as \"\".

\

\"\".

\

\"\" 

\

Since the function \"\" is undefined at \"\", it is discontinuous on the interval \"\".

\

Since the function \"\" is discontinuous on the interval \"\", it does not satisfies the Rolle\"\"s Theorem.

\

\"\"

\

\"\".

\

The function \"\" is discontinuous on the interval \"\", it does not satisfies the Rolle\"\"s Theorem.