\"\"

\

Rolle\"\"s Theorem :

\

Let \"\" be a function that satisfies the following three hypotheses.

\

1. \"\" is continuous on \"\".

\

2. \"\" is differentiable on \"\".

\

3. \"\".

\

Then there is a number \"\" in \"\" such that \"\".

\

\"\"

\

The function is \"\"\"\".

\

\"\"

\

Differentiate on each side with respect to \"\".

\

\"\"

\

Denominator should not be equal to zero.

\

So the function \"\" not differentiable at \"\".

\

Hence function \"\" does not satisfy the Rolle\"\"s theorem.

\

\"\"

\

The function \"\" does not satisfy the Rolle\"\"s theorem at \"\".