\"\"

\

The function \"\" and \"\".

\

Rolle\"\"s theorem :

\

Let \"\" be a function that satisfies the following three hypotheses.

\

1. \"\" is continuous on \"\".

\

2. \"\"  is differentiable on \"\".

\

3. \"\".

\

Then there is a number \"\" in \"\" such that \"\".

\

\"\"

\

The function \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

The denominator should not be equal to zero.

\

The function \"\" is not differentiable at \"\".

\

Therefore the function doe not satisfy the rolle\"\"s theorem.

\

\"\"

\

The function \"\" does not satisfy the rolle\"\"s theorem at \"\".