\"\"

\

The function is \"\"\"\".

\

Rolle\"\"s Theorem :

\

Let \"\" be a function that satisfies the following three hypotheses.

\

1. \"\" is continuous on \"\".

\

2. \"\" is differentiable on \"\".

\

3. \"\".

\

Then there is a number \"\" in \"\" such that \"\".

\

The function \"\" continuous over \"\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

Substitute \"\".

\

\"\"

\

Therefore \"\".

\

Hence function \"\" satisfy the Rolle\"\"s theorem.

\

\"\"

\

There exist at least one \"\" value in the interval \"\" ,such that \"\".

\

\"\".

\

Apply derivative with respect to \"\".

\

\"\"

\

\

Equate it to zero.

\

\"\"

\

If \"\" then \"\". 

\

If \"\", \"\".

\

\"\" is not in the interval \"\".

\

\

Hence \"\" and \"\".

\

\"\" 

\

The function \"\" satisfy the Rolle\"\"s theorem.

\

The value of \"\".