\"\"

\

The function is \"\", at the point \"\".

\

Rolle\"\"s Theorem :

\

Let \"\" be a function that satisfies the following three hypotheses.

\

1. \"\"  is continuous on \"\".

\

2. \"\"  is differentiable on \"\".

\

3. \"\".

\

Then there is a number \"\" in \"\" such that \"\".

\

\"\"

\

The function is \"\", at the point \"\".

\

Substitute \"\".

\

\"\"

\

Substitute \"\".

\

\"\"

\

\"\"

\

\"\".

\

But function is not continuous at \"\".

\

When \"\", \"\".

\

Hence function is not continuous on \"\" .

\

\"\"

\

\"\"; but  f is not continuous on \"\".