\"\"

\

(a)

\

The cost function is \"\".

\

Find \"\".

\

Substitute \"\" in the cost function.

\

\"\"

\

\"\"

\

\"\"

\

Rewrite the expression.

\

\"\"

\

\"\"

\

Find \"\".

\

Substitute \"\" in the cost function.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Therefore, \"\".

\

\"\"

\

(b)

\

Rolle\"\"s Theorem :

\

Let \"\" be a function that satisfies the following three hypotheses.

\

1. \"\"  is continuous on \"\".

\

2. \"\"  is differentiable on \"\".

\

3. \"\".

\

Then there is a number \"\" in \"\" such that \"\".

\

\"\" is continuous on \"\" and differentiable on the interval \"\".

\

\"\".

\

So the function \"\" satisfies the three hypotheses.

\

Therefore there is a number \"\" in \"\" such that \"\".

\

\"\"

\

The cost function is \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

Equate it to zero .

\

\"\"

\

\"\"

\

Hence rate of change of the cost function is zero at \"\".

\

\"\"

\

(a) \"\".

\

(b) Rate of change of the cost function is zero at \"\".