\"\"

\

Rolles Theorem :

\

Let \"\" be a function that satisfies the following three hypotheses.

\

1. \"\"  is continuous on \"\".

\

2. \"\"  is differentiable on \"\".

\

3. \"\".

\

Then there is a number \"\" in \"\" such that \"\".

\

\"\"

\

The function is \"\", over the interval \"\" .

\

The function \"\" is continuous on the interval \"\".

\

Substitute \"\" in the function.

\

\"\"

\

Substitute \"\" in the function.

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

Differentiate on each side \"\".

\

\"\"

\

Denominator of the derivative function should not be zero.

\

 So the derivative of the function is not differentiable at \"\".

\

\"\" is in the interval \"\".

\

Hence Rolles theorem second hypothesis is not satisfied.

\

\"\"

\

\"\"; but  \"\" is not differentiable at \"\".