\"\"

\

The function is \"f

\

\"fraction             (Apply the derivative)

\

\"f        (Apply the sum rule)

\

\"f                       (The power rule:\"fraction)

\

\"f                                       (Simplify)

\

\"\"

\

To find the critical number then f\\'(x) = 0

\

\"f

\

 

\

\"2

\

\"2                                               (Subtract 6 from each side)

\

\"x                                                 (Divide each side by 2)

\

\"\"

\

Because there are no points for which f\\' does not exist, you can conclude that \"x the only critical number. The table summarizes the testing of the two intervals determined by these one critical number. \ \

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

Interval

\
\

\"minus

\
\

\"minus

\
\

Test Value

\
\

\"x

\
\

\"x

\
\

Sign of f\\'(x)

\
\

\"f

\
\

\"f

\
\

Conclusion

\
\

Decreasing

\
\

Increasing

\
\

\"\"

\

Therefore f is increasing on the interval \"left and decreasing on the interval \"left.