\"\"

\

(a)

\

The function is \"\".

\

Find the critical numbers by applying derivative.

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

Equate the derivative to \"\".

\

\"\"

\

Therefore the critical number is \"\".

\

\"\"

\

(b)

\

Consider the test intervals to find the interval of increasing and decreasing.

\

Test intervals are \"\" and \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Test intervalTest valueSign of \"\"Conclusion
\"\"\"\" \

\"\"

\
 Increasing
\"\"\"\" \

\"\"

\
 Decreasing
\

 The function \"\" is increasing on the interval \"\".

\

The function \"\" is decreasing on the interval \"\".

\

\"\"

\

(c)

\

Use first Derivative Test to identify all relative extrema.

\

\"\" changes from positive to negative . [From (b) ]

\

Therefore according to First derivative test , the function has maximum at \"\".

\

The function \"\" has a relative maximum at \"\".

\

Find \"\".

\

\"\"

\

So the function \"\" has relative maximum at \"\".

\

\"\"

\

(d)

\

Graph the function is \"\".

\

\"\"

\

Observe the graph :

\

The function has critical number at \"\".

\

The function \"\" is increasing on the interval \"\" and decreasing on the interval \"\".

\

The function \"\" has relative maximum at \"\".

\

\"\"

\

(a) The function has critical number at \"\". 

\

(b) The function \"\" is increasing on the interval \"\" and decreasing on the interval \"\".

\

(c) The function \"\" has relative maximum at \"\". 

\

(d) Graph of the function \"\" is \ \

\

\"\"