\"\"

\

 (a)

\

The function is \"\".

\

Find the critical numbers by applying derivative.

\

\

\"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\".

\

\

Equate \"\" to \"\".

\

\"\"

\

\"\" and  \"\"

\

\"\" and  \"\".

\

\

Critical numbers are \"\" and \"\".

\

\"\"

\

(b)

\

Consider the test intervals to find the interval of increasing and decreasing.

\

Critical points are \"\" and \"\".

\

The test intervals are \"\"\"\" and \"\".

\ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
IntervalTest ValueSign of \"\"Conclusion
\"\"\"\" \

\"\"

\
Increasing
\

\"\"

\
\"\" \

\"\"

\
Decreasing
\"\"\"\" \

\"\"

\
Increasing
\

The function is increasing on the intervals \"\" and \"\".

\

The function is decreasing on the interval \"\".

\

\"\"

\

(c) 

\

First derivative test to identify all relative extrema.

\

\

From the first derivative test the function \"\" changing from positive to negative at \"\".  [ from (b)]

\

\"\" has a relative maximum at \"\".

\

\"\"

\

So the function \"\" has relative maximum at \"\".

\

From the first derivative test the function \"\" changing from negative to positive at \"\". [ from (b)]

\

\"\" has a relative minimum at  \"\".

\

\"\"

\

So the function \"\" has relative minimum at \"\".

\

\"\"

\

(d)

\

Graph :

\

Graph the function \"\" :

\

\"\"

\

Observe the graph :

\

The function has critical numbers at \"\" and \"\".

\

The function \"\" is increasing on the intervals \"\" , \"\"and decreasing on the interval \"\".

\

The function \"\" has relative maximum at \"\" and \"\".

\

\"\"

\

(a) The function has critical numbers at \"\" and \"\".

\

\

(b) The function \"\" is increasing on the interval \"\" and \"\" and decreasing on the interval \"\".

\

(c) The function \"\" has relative maximum at \"\".

\

      The function \"\" has relative minimum at \"\".

\

(d) Graph of the function \"\" is

\

\"\".