\"\"

\

The function is \"\".

\

Domain :

\

Thu function is \"\".

\

The function \"\" continuous for all the points.

\

Thus, the domain of the function \"\" is all real numbers.

\

Intercepts :

\

\"\"- intercept is \"\":

\

\"\"

\

Thus,  \"\"- intercept is \"\".

\

\"\" - intercept :

\

Consider \"\" and solve for \"\".

\

\"\"

\

Thus, \"\" - intercept is \"\".

\

\"\"

\

Symmetry :

\

If \"\", then the function \"\" is even and it is symmetric about \"\"-axis.

\

If \"\", then the function \"\" is odd and it is symmetric about origin.

\

\"\"

\

\"\"

\

Since \"\", the function \"\" is an even function.

\

Since the function \"\" ia an even function, the graph of the function is symmetric about \"\"-axis.

\

\"\"

\

Asymptotes :

\

Vertical asymptote :

\

Vertical asymptote exist when denominator is zero.

\

Equate denominator to zero.

\

\"\"

\

There is no real values for \"\".

\

So there is no vertical asymptotes.

\

Horizontal asymptote :

\

The line \"\" is called a horizontal asymptote of the curve \"\" if either \"\"  or \"\".

\

\"\"

\

Thus, the horizontal asymptote is  \"\".

\

\"\"

\

Intervals of increase or decrease :

\

\"\".

\

Differentiate on each side with respect to \"\".

\

\"\"

\

\"\".

\

\"\"

\

Determination of inflection point :

\

\"\".

\

Differentiate on each side with respect to \"\" :

\

\"\"

\

\"\".

\

Equate \"\" to zero.

\

\"\"

\

If \"\", \"\".

\

If \"\", \"\".

\

Thus, the inflection points are \"\" and \"\".

\

Consider the test intervals as \"\", \"\" and \"\".

\ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

Interval

\
Test ValueSign of \"\"Concavity
\"\"\"\" \

\"\"

\
Up
\"\" \"\" \

\"\"

\
Down
\"\"\"\" \

\"\"

\
      Up
\

Thus, the graph is concave up on the intervals \"\" and \"\".

\

The graph is concave down on the interval \"\".

\

\"\"

\

Graph of the function  \"\" :

\

\"\" .

\

\"\"

\

Graph of the function  \"\" :  

\

\"\".