\"\"

\

The function is \"\" and interval is \"\".

\

Find the intercepts :

\

To find the \"\"- intercept, substitute \"\" in the function.

\

\"\"

\

Solve \"\" in the interval \"\".

\

\"\"

\

Let \"\".

\

\"\".

\

Solution of the quadratic equation are

\

\"\"

\

\"\" and \"\".

\

\"\" and \"\".

\

There are no solution for \"\".

\

\"\".

\

General solution of \"\" is \"\".

\

For \"\", \"\".

\

\"\".

\

\"\"  is not in the interval \"\".

\

One solution is \"\".

\

For \"\", \"\".

\

\"\"

\

\"\"  is not in the interval \"\".

\

Another solution is \"\".

\

The solutions of \"\" are \"\" and \"\" in the interval \"\".

\

Therefore, the \"\"- intercepts are \"\" and \"\".

\

To find the \"\"-intercept, substitute \"\" in the function.

\

\"\"

\

The \"\"- intercept is \"\".

\

\"\"

\

Find the relative extrema for the function \"\":

\

Consider \"\".

\

Differentiate on each side with respect to \"\".

\

\"\"

\

\"\"

\

To find the critical number, evaluate \"\".

\

\"\"

\

\"\" and \"\"

\

\"\" and \"\"

\

The solutions of \"\" are \"\", \"\" and \"\" in the interval \"\".

\

The solutions of \"\" are \"\" and \"\" in the interval \"\".

\

Critical points occur at \"\"\"\" and \"\".

\

\"\"

\

Find the points of inflection :

\

Consider \"\".

\

Derivative on each side with respect to \"\".

\

\"\"

\

To find inflection points, equate \"\" to zero.

\

\"\"

\

\"\" and \"\".

\

The solutions of \"\" are \"\" and \"\" in the interval \"\".

\

The solutions of \"\" are \"\" and \"\" in the interval \"\".

\

If \"\", then \"\".

\

If \"\", then \"\".

\

If \"\", then \"\".

\

If \"\", then \"\".

\

The inflection points are \"\", \"\", \"\" and \"\".

\

\"\"

\

Find the asymptotes :

\

The function is \"\".

\

Vertical asymptote :

\

The line \"\" is a vertical asymptote if \"\".

\

\"\"

\

Therefore, there is no vertical asymptote for the function \"\".

\

Horizontal asymptote :

\

The line \"\" is a horizontal asymptote if \"\".

\

\"\".

\

Limit does not exist.

\

Therefore, there is no horizontal asymptote for the function \"\".

\

\"\"

\

Find intervals of increase or decrease :

\

Critical points are \"\"\"\" and \"\".

\

Test interval are \"\" and \"\".

\

 

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
IntervalTest valueSign of \"\"Conclusion
\"\" \

\"\"

\
\

\"\"

\
Decrease
\"\" \

\"\"

\
\

\"\"

\
Increase
\

The function is increasing in the interval \"\".

\

The function is decreasing in the interval \"\".

\

Perform second derivative test to identify the nature of the extrema.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Test valueSign of \"\"Conclusion
\"\" \

\"\"

\
No Conclusion
\"\" \

\"\"

\
Relative minimum
\"\" \

\"\"

\
No Conclusion
\

Fom the table of increase and decrease, the starts decreasing from a maximum point and increases upto a maximum point.

\

Hence Relative maximum occurs at \"\" and \"\".

\

Relative minimum occurs at \"\".

\

Find the value of the function at critical points.

\

If \"\", \"\".

\

If \"\", \"\".

\

If \"\", \"\".

\

Relative maximum at \"\" and \"\".

\

Relative maximum at \"\".

\

\"\"

\

Find the Concavity of the function.

\

Inflection points occur at \"\", \"\", \"\" and \"\".

\

Consider the test intervals as \"\", \"\" and \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
IntervalTest valueSign of \"\"Conclusion
\"\"\"\" \

\"\"

\
Concave Down
\"\"\"\" \

\"\"

\
Concave Up
\"\"\"\" \

\"\"

\
Concave Down
\

The graph is concave up on the intervals \"\"

\

The graph is concave down on the intervals \"\" and \"\".

\

\"\"

\

Using all the above characteristics of the function, graph the function \"\" in the interval \"\".

\

Graph :

\

Draw a coordinate plane.

\

Graph the function \"\" in the interval \"\".

\

\"\"

\

\"\"

\

Graph of the function \"\" in the interval \"\" is

\

\"\".