\"\"

\

(a)

\

The completed table :

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Height, \"\"Length and Width, \"\"Volume, \"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\

Observe the above table :

\

The maximum volume occurs at \"\", i.e, \"\".

\

\"\"

\

(b)

\

From the table :

\

Volume of the box :

\

\"\"

\

\"\".\"\"

\

(c)

\

Volume \"\".

\

Derivative on each side with respect to \"\".

\

\"\"

\

Find the crirical numbers by equating derivative to zero.

\

\"\"

\

\"\" and \"\"

\

\"\" and \"\".

\

Thus, the critical numbers are \"\" and \"\".

\

\"\"

\

\"\".

\

Derivative on each side with respect to \"\".

\

\"\"

\

\"\".

\

If \"\", then \"\".

\

By second derivative test, \"\" is a maximum value.

\

Substitute \"\" in \"\".

\

\"\".

\

Thus, the maximum volume is \"\".

\

If \"\", then \"\".

\

By the second derivative test, \"\" is a minimum value.

\

\"\"

\

The volume function is \"\".

\

Draw a coordinate plane.

\

Graph the function \"\".

\

Graph :

\

\"\"

\

Observe the graph :

\

The maximum volume occurs at \"\" and the maximum volume is \"\".

\

\"\"

\

(a)

\

The completed table :

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Height, \"\"Length and Width, \"\"Volume, \"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\

The maximum volume occurs at \"\", i.e, \"\".

\

(b)

\

Volume \"\".

\

(c)

\

The critical numbers are \"\" and \"\".

\

The maximum volume is \"\".

\

(d)

\

Graph of the function \"\"

\

\"\"

\

The maximum volume occurs at \"\" and the maximum volume is \"\".