\"\"

\

The right circular is designed to hold soft drink of \"\" meter.

\

(a)

\

\"\"

\

\"\"

\

(b)

\

Complete the table:

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Length \"\"Height \"\" Area \"\"
\"\" \"\" \"\"
\"\"\"\" \"\"
\"\"\"\" \"\"
\"\"\"\" \"\"
\"\"\"\" \"\"
\"\"\"\" \"\"
\

The maximum area is \"\" at \"\".

\

(c)

\

Find the area \"\" as a function of \"\".

\

The area \"\".

\

\"\" \ \

\

(d)

\

The area is \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

Find the critical numbers by equating \"\".

\

\"\"

\

Substitute \"\" in \"\".

\

\"\"

\

\"\".

\

The maximum area is \"\" at \"\".

\

\"\"

\

(e)

\

Graph the area: \"\".

\

\"\"

\

Observe the graph:

\

The maximum area is \"\" at \"\".

\

\"\"

\

(a)

\

\"\"

\

(b)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Length \"\"Height \"\" Area \"\"
\"\" \"\" \"\"
\"\"\"\" \"\"
\"\"\"\" \"\"
\"\"\"\" \"\"
\"\"\"\" \"\"
\"\"\"\" \"\"
\

The maximum area is \"\" at \"\".

\

(c) The area \"\".

\

(d) The maximum area is \"\" at \"\".

\

(e) Graph the \"\":

\

\"\"