\"\"

\

The right circular cylinder is designed to hold soft drink of \"\".

\

(a)

\

Complete the table:

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Radius \"\" Height Surface area \"\"
\"\" \"\" \"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\

\"\"

\

(b)

\

Graph the surface area and label the minimum point:

\

\"\"

\

Using table feature of the graphing utility, complete the table:

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Radius \"\" Surface area \"\"
\"\" \"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\

Observe the table:

\

The minimum surface area is \"\" at \"\".

\

\"\"

\

(c)

\

Find the surface area \"\" as a function of \"\".

\

The surface area \"\".

\

\"\"

\

(d)

\

Graph the surface area: \"\".

\

\"\"

\

Observe the graph:

\

The minimum surface area is \"\" at \"\".

\

\"\"

\

(e)

\

The surface area is \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Find the critical numbers by equating \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\".

\

The radius is \"\" and height is \"\".

\

\"\"

\

(a)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Radius \"\" Height Surface area \"\"
\"\" \"\" \"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\

(b)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Radius \"\" Surface area \"\"
\"\" \"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\

The minimum surface area is \"\" at \"\".

\

(c) The surface area \"\".

\

(d) Graph the \"\".

\

\"\"

\

Observe the graph:

\

The minimum surface area is \"\" at \"\".

\

(e) The radius is \"\" and height is \"\".